Uniformization of varieties with log-canonical singularities

Benoît Cadorel - IECL, Nancy (France)

September 27th, 2024

The classical case

The classical case Generalizations to singular or non-compact settings

Theorem (Yau)

Let X be a complex projective manifold, with K_X ample. Then, we have the following Miyaoka-Yau inequality :

$$\Delta_{\mathrm{MY}}(X) := \left(2(n+1)c_2(T_X) - n\,c_1^2(T_X)\right) \cdot c_1(K_X)^{n-2} \ge 0.$$

In case of equality, $X = \Gamma \setminus \mathbb{B}^n$ is a ball quotient by a cocompact torsion free subgroup $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$).

The classical case Generalizations to singular or non-compact settings

Idea of proof

1)
$$K_X$$
 ample $\Rightarrow \exists \omega_{KE} \in c_1(K_X)$, i.e. $-\operatorname{Ric}(h_{KE}) = \omega_{KE}$.

2) Write

$$\underbrace{\int_{X} ||i\Theta(h_{\mathrm{KE}})^{\perp_{\omega_{KE}}}||_{h_{\mathrm{KE}}}^2}_{\alpha - \Delta_{\mathrm{MY}}(X)} \leq 0.$$

3) In case of equality, the vanishing of $i\Theta(h_{\rm KE})^{\perp_{\omega_{\rm KE}}}$ yields

$$h_{\mathrm{KE}} = h_{\mathbb{B}^n} + O(|z|^2)$$
 near any point of X

4) Deduce that $\exists (\mathbb{B}^n, h_{\mathbb{B}^n}) \xrightarrow{\Psi} (X, h_{\mathrm{KE}})$, covering map (holomorphic and locally isometric everywhere).

The classical case Generalizations to singular or non-compact settings

The klt case

Theorem (Greb-Kebekus-Peternell-Taji, 2019 \sim 2020)

Let X be a complex projective variety with klt singularities and K_X ample. Then one has

$$\Delta_{\mathrm{MY}}^{\mathrm{orb}}(X) := \left(2(n+1)c_{2,\mathrm{orb}}(T_X) - n\,c_{1,\mathrm{orb}}^2(T_X)\right) \cdot c_1(K_X)^{n-2} \ge 0.$$

In case of equality, $X \cong \Gamma \setminus \mathbb{B}^n$, where $\Gamma \subset Aut(\mathbb{B}^n)$ is a discrete cocompact subgroup without fixed point in codimension 1.

On klt and lc singularities

Let X be a germ of singularity with K_X Q-Cartier. Let $\pi : \hat{X} \to X$ be a resolution of singularities, and write

$$K_{\widehat{X}} \sim_{\mathbb{Q}} \pi^* K_X + \sum_E a_E E, \quad (a_E \in \mathbb{Q} : \text{ discrepencies}).$$

Then :

- if all $a_E > -1$, the singularities are *log-terminal* (klt);
- **2** if all $a_E \ge -1$, the singularities are *log-canonical* (lc).

The classical case Generalizations to singular or non-compact settings

For example, if \boldsymbol{X} is a cone over a smooth projective curve $\boldsymbol{C},$ then one may have

klt singularities are quotient in codimension 2. (quotient singularities : $\stackrel{\text{loc}}{\cong} G \setminus \mathbb{C}^n$, with G finite)

Definition of $\Delta_{MY}^{orb}(X)$ (for X klt with K_X ample)

There exists $U \subset X$ with $\operatorname{codim}(X - U) \ge 2$, such that U has a structure of orbifold.

Pick
$$S = H_1 \cap \ldots \cap H_{n-2}$$
 with generic $H_i \in |m_i K_X|$ $(m_i \gg 1)$.

Then $S \subset U$. In fact, S has a (smooth) stack structure, and $\mathcal{T}_X|_S$ is an orbifold vector bundle.

Let

$$\Delta_{\rm MY}^{\rm orb}(X) := \frac{1}{\prod_i m_i} \left(2(n+1)c_{2,\rm orb}(T_X|_S) - n c_{1,\rm orb}^2(T_X|_S) \right)$$

The classical case Generalizations to singular or non-compact settings

Other generalizations

• [Claudon-Guenancia-Graf, 22]

Let (X, Δ) be a klt pair with $\Delta = \sum_i (1 - \frac{1}{m_i})D_i$ and $K_X + \Delta$ ample. Then $\Delta_{MY}^{orb}(X, \Delta) \ge 0$, and if equality :

$$X \cong \Gamma ig > \mathbb{B}^n \quad (\Gamma \subset \operatorname{Aut}(\mathbb{B}^n) \text{ cocompact}).$$

• [Deng, 20]

Let $X = \overline{X} - D$ be a quasi-projective variety with \overline{X}, D smooth. Assume that $(\Omega_{\overline{X}}(\log D) \oplus \mathcal{O}_{\overline{X}}, \theta)$ is *L*-stable with respect to a nef and big *L*. Then we have a Miyaoka-Yau inequality w.r.t. *L*, and in case of equality

$$X \cong \Gamma \setminus \mathbb{B}^n$$
 ($\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ torsion free, not cocompact).

Baily-Borel-Mok compactifications of non-compact ball quotient

Let $\Gamma \subset Aut(\mathbb{B}^n)$ be a lattice (i.e. discrete, finite Bergman covolume).

Theorem (Baily-Borel (1966), Mok (2012))

The quotient $X := \Gamma \setminus \mathbb{B}^n$ admits a structure of quasi-projective variety, and a projective compactification

 $X^* \cong X \cup \{p_1, \ldots, p_m\}.$

The singularities p_i are lc, and K_{X*} is ample.

Up to replacing Γ by $\Gamma' \subset \Gamma,$ the analytic germs $(X^* \ni p_i)$ are locally isomorphic to

 $Cone(A_i, L_i)$ $(A_i : abelian variety, L_i : anti-ample on A_i).$

Can we characterize algebraically the X^{\ast} obtained this way ? By means of a Miyaoka-Yau inequality ?

(Note : the surface case is well-understood thanks to work of S. Kobayashi. We will focus on the case $n \ge 3$)

Baily-Borel-Mok compactifications Setting Non-examples to avoid

Setting

Let X^* be a projective variety with :

- punctual, lc singularities (let $X := (X^*)^{reg}$);
- 2 K_{X*} ample;

Miyaoka-Yau characteristic number

As before, pick $S = H_1 \cap \ldots \cap H_{n-2}$ with generic $H_i \in |m_i K_X|$ $(m_i \gg 1)$.

Then $S \subset X$.

Let

$$\Delta_{\mathrm{MY}}(X^*) := \frac{1}{\prod_i m_i} \left(2(n+1)c_2(T_X|_S) - n c_1^2(T_X|_S) \right)$$

Theorem (Consequence of [Greb-Kebekus-Peternell-Taji])

In this situation, one has $\Delta_{MY}(X^*) \ge 0$. In case of equality, there exists

$$\psi: \widetilde{X} \to \mathbb{B}^n,$$

étale everywhere, equivariant for a representation $\rho : \pi_1(X) \to \operatorname{Aut}(\mathbb{B}^n)$.

Baily-Borel-Mok compactifications Setting Non-examples to avoid

Idea of proof

1) [Guenancia, 15] Since K_{X*} is ample and X^* has lc singularities, \mathcal{T}_{X*} is K_{X*} -semi-stable;

2) [GKPT, 19] the Higgs sheaf $(\Omega_{X*}^{[1]} \oplus \mathcal{O}_{X*}, \theta)$ is K_{X*} -stable;

3) For $S \subset X$ as above, the restriction $(\Omega_{X^*}^{[1]} \oplus \mathcal{O}_{X^*}, \theta)|_S$ is still K_{X^*} -stable as a Higgs *bundle* (Mehta-Ramanathan type of argument);

4) [Simpson] One has $0 \leq \Delta_{BG}(\Omega_{X*}^{[1]} \oplus \mathcal{O}_{X*}) = \Delta_{MY}(X^*)$. In case of equality, there exist

 $\left\{ \begin{array}{l} \rho: \pi_1(S) \to \operatorname{Aut}(\mathbb{B}^n) \\ \psi_S: \widetilde{S} \to \mathbb{B}^n \quad \rho\text{-equivariant} \end{array} \right.$

5) Sweep \widetilde{X} by \widetilde{S} , and glue the different ψ_S to define

$$\psi: \widetilde{X} \to \mathbb{B}^n$$

(Idea of T. Mochizuki)

The proof still works if we replace "log-canonical singularities" by " \mathcal{T}_{X*} is K_{X*} -semistable" (jump directly to Step 2).

Given $\psi: \widetilde{X} \to \mathbb{B}^n$ locally étale as above, we just need to chack that $\psi^* h_{\mathbb{B}^n}$ is complete to prove that ψ is an isomorphism.

This then implies that X^* is the Baily-Borel-Mok compactification of

$$\Gamma \setminus \mathbb{B}^n \quad (\Gamma = \rho(\pi_1(X))).$$

Baily-Borel-Mok compactifications Setting Non-examples to avoid

A class of non-examples to avoid

Deligne, Mostow, Siu, Deraux, Stover, Toledo... have constructed compact Kähler manifolds ${\cal M}$ sitting in diagrams

$$\begin{array}{ccc} & \widetilde{M} & \stackrel{\psi}{\longrightarrow} & \mathbb{B}^n \\ & & \downarrow^{\pi} \\ D_1, D_2, \dots, D_m & \longleftrightarrow & M \end{array}$$

where

- () the D_i are smooth disjoint divisors. Let $D = \sum_i D_i$;
- **2** $\psi|_{\pi^{-1}(M-D)}$ is ρ -equivariant for some $\rho : \pi_1(M-D) \to \operatorname{Aut}(\mathbb{B}^n)$, and is étale on this open subset of \widetilde{M} .

() near each $\pi^{-1}(D_i)$, ψ has the form

$$\psi(z_1, z_2, \dots, z_n) = (z_1^{m_i}, z_2, \dots, z_n) \qquad (D_i \stackrel{loc}{=} \{z_1 = 0\}).$$

At least for Deraux's and Deligne-Mostow-Siu's examples :

Proposition (C, 24)

Let X = M - D. There exists a morphism $M \to X^*$, contracting each D_i to a point, and leaving X untouched. For X^* , we have the following :

- K_{X*} is Q-Cartier and ample;
- 2 T_{X*} is K_{X*} -semistable;
- 3 $\Delta_{MY}(X^*) = 0;$

However, $\psi : \widetilde{X} \to \mathbb{B}^n$ is not uniformizing.

Obtaining X^* as an abstract complex space is fairly easy. Showing that K_{X*} is \mathbb{Q} -Cartier (and then ample) does not seem immediate.

However, the singularities of the X^* are not log-canonical here!

Statement Asymptotic behaviour of the period map Varieties of special type

Statement of the criterion

Theorem (C, 24)

Let X^* be a complex projective variety of dimension ≥ 3 , with punctual log-canonical singularities, and K_{X^*} ample. Assume :

1 $\Delta_{MY}(X^*) = 0;$

2 there exists a log-resolution of singularities $Y \to X^*$ such that all $a_E = -1$.

Then X^* is a Baily-Borel-Mok compactification of a ball quotient by a torsion-free lattice $\Gamma \subset Aut(\mathbb{B}^n)$.

As said above, the proof boils down to showing that $\psi^* h_{\mathbb{B}^n}$ is complete.

Statement Asymptotic behaviour of the period map Varieties of special type

Asymptotic behaviour of the period map

Write $Y = X \cup D$, where D is an SNC divisor.

Let $F \subset D$ be a smooth (locally closed) stratum, and let $(\Delta^*)^k \times \Delta^{n-k} \subset X$ be an adapted polydisk so that $F \stackrel{loc}{\cong} \{0\}^k \times \Delta^{n-k}$.

We get a diagram

The *nilpotent orbit theorem* ([Schmid], [Cattani-Deligne-Kaplan] and recently [Sabbah-Schnell], [Deng]) shows that there are two possibilities :

1 $\exists b_{\infty} \in \partial \mathbb{B}^n$ such that

$$\psi(w) \xrightarrow[\pi(w)\to\{0\}^k \times \Delta^{n-k} b_{\infty}$$

 $\textcircled{0} \ \exists \varphi : \{0\}^k \times \Delta^{n-k} \to \mathbb{B}^p \hookrightarrow \mathbb{B}^n \text{ (totally geodesic subball with } p < n \text{) such that}$

$$\psi(w) \xrightarrow[\pi(w) \to z \in \{0\}^k \times \Delta^{n-k} \varphi(z)$$

Above a point of a smooth stratum $F \subset D$: • either $\exists b_{\infty} \in \partial \mathbb{B}^{n}$ such that $\psi(w) \xrightarrow[\pi(w) \to \{0\}^{k} \times \Delta^{n-k}] b_{\infty}$ • or $\exists \varphi : \{0\}^{k} \times \Delta^{n-k} \to \mathbb{B}^{p} \hookrightarrow \mathbb{B}^{n}$ (totally geodesic subball with p < n) such that $\psi(w) \xrightarrow[\pi(w) \to z \in \{0\}^{k} \times \Delta^{n-k}] \varphi(z)$

If Case 1 happens for all strata, then $\psi^* h_{\mathbb{B}^n}$ is complete.

Assume by contradiction that Case 2 happens for some F. Then glueing the local φ defined above, we may define

$$\begin{cases} \psi_F: \widetilde{F} \to \mathbb{B}^p \subset \mathbb{B}^n\\ \rho_F: \pi_1(F) \to \operatorname{Aut}(\mathbb{B}^p) \end{cases} \quad \text{(equivariant data)}$$

We are going to show that these maps ψ_F are constant.

Statement Asymptotic behaviour of the period map Varieties of special type

Varieties of special type according to Campana

"Definition"

Let $X = \overline{X} - D$ be a quasi-projective variety. We say that X is of *special type* if there exists no rational fibration $(\overline{X}, D) \xrightarrow{f} (Y, \Delta)$ of general type. (where (Y, Δ) is the *orbifold base* of f, according to Campana).

Theorem (Campana)

Let X be a quasi-projective variety. Then there exists a fibration $c: X \dashrightarrow (C, \Delta_c)$ (the core fibration) where

- the very general fibre of c is of special type;
- 2 the orbifold base (C, Δ_c) is of general type.

Statement Asymptotic behaviour of the period map Varieties of special type

Special connectedness and log-canonical singularities

Theorem (C, 24)

Let X^* be a variety with log-canonical singularities, and let $q: Y \to X^*$ be a log-resolution. Then the fibers of q are connected by chains of varieties of special type (specially chain connected).

[Hacon-McKernan, 05] For klt singularities, the fibers are *rationally chain connected*.

For the proof, substitute in [Hacon-McKernan] the use of the MRC fibration with the use of Campana's core fibration !

Corollary

Assume $a_E = -1$ for all q-exceptional divisors. Then the smooth strata F of the exceptional divisors are actually of special type.

Isotriviality of \mathbb{C} -VHS on varieties of special type

Theorem (Consequence of [C Deng Yamanoi 22])

Let F be a quasi-projective variety of special type. Then any polarized \mathbb{C} -VHS on F is isotrivial. In particular, if we are given

$$\begin{cases} \psi_F : \widetilde{F} \to \mathbb{B}^p \\ \rho_F : \pi_1(F) \to \operatorname{Aut}(\mathbb{B}^p) \end{cases} \quad (equivariant \ data),$$

then ψ_F is actually constant.

[Taji 13] Isotriviality for families of canonically polarized varieties above bases of special type.

 ψ_F lands in a subdomain of \mathbb{B}^p , homogeneous under the semi-simple part of the (reductive) algebraic group $\overline{(\mathrm{Im}(\rho_F))}^{Zar}$.

But [C Deng Yamanoi] implies the latter is also virtually abelian, hence finite.

End of proof of the criterion

 X^* has punctual singularities with all $a_E = -1$ for a log-resolution $q: Y \to X$. Write $Y = X \cup D$.

For all stratum $F \subset D$ we have then *constant* limiting maps $\varphi : \widetilde{F} \to \overline{\mathbb{B}^n}$ (*cheating a bit : this map needs more data to be uniquely determined*).

We want to exclude the fact that such a φ_F lands in $\mathbb{B}^n \subset \overline{\mathbb{B}^n}$.

If this happens, the situation is actually as follows.

A contradiction

Let $p \in X^*$ lying under F and let $b_{\infty} \in \mathbb{B}^n$ be the limiting point. Then, we may find a radius r > 0 and a neighborhood $U \subset X$, such that

commutes.

But $B(b_{\infty}, r) - \{b_{\infty}\}$ is simply connected ! So $\widetilde{U - \{p\}} \cong \mathbb{B}^n - \{0\}$, and

$$U \cong G \setminus \mathbb{B}^n$$
 (*G* finite).

The singularities are quotient, hence klt. Contradiction with the hypothesis $a_E = -1$.

Statement Asymptotic behaviour of the period map Varieties of special type

Thank you for your attention !